
J .  Fluid Yech.  (1992), vol. 242, p p .  279-298 
P r i n k ?  in Great Britain 

279 

Solitary internal waves with oscillatory tails 

By T. R. AKYLAS’ AND R. H. J. GRIMSHAW’ 
Department of Mechanical Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA 
School of Mathematics, University of New South Wales, Kensington, 

NSW 2033, Australia 

(Received 30 September 1991) 

Solitary internal waves in a density-stratified fluid of shallow depth are considered. 
According to the classical weakly nonlinear long-wave theory, the propagation of 
each long-wave mode is governed by the Kortewegde Vries equation to leading 
order, and locally confined solitary waves with a ‘sech2’ profile are possible. Using a 
singular-perturbation procedure, it is shown that, in general, solitary waves of mode 
n > 1 actually develop oscillatory tails of infinite extent, consisting of lower-mode 
short waves. The amplitude of these tails is exponentially small with respect to an 
amplitude parameter, and lies beyond all orders of the usual long-wave expansion. 
To illustrate the theory, two special cases of stratification are discussed in detail, and 
the amplitude of the oscillations at  the solitary-wave tails is determined explicitly. 
The theoretical predictions are supported by experimental observations. 

1. Introduction 
The Korteweg-de Vries (KdV) equation describes the propagation of small- 

amplitude long waves in a wide variety of physical systems involving shallow fluids 
(see, for example, Benney 1966). It combines the leading-order nonlinear and 
dispersive effects, and predicts the existence of solitary-wave solutions that represent 
either elevation or depression waves with a ‘sech2 ’ profile. In the classical case of 
gravity surface waves on water of finite depth, the KdV equation indicates that 
elevation solitary waves are possible. Such locally confined waves of permanent form 
indeed have been shown to exist by both accurate numerical computations (Longuet- 
Higgins & Fenton 1974 ; Byatt-Smith & Longuet-Higgins 1976) and rigorous 
analytical work (Amick & Toland 1981), based on the full nonlinear water-wave 
equations. 

However, it is now recognized that the predictions of the KdV equation for 
gravity-capillary solitary waves are not entirely consistent with the full water-wave 
theory. According to the KdV equation, elevation solitary waves exist for low surface 
tension (surface- tension parameter, 7, less than g), while depression solitary waves are 
possible when r > g. On the other hand, the numerical computations of Hunter & 
Vanden-Broeck (1983), using the exact nonlinear equations, confirmed the existence 
of depression solitary waves for high surface tension (7 > g), but could not find 
localized elevation waves of permanent form for 0 < 7 < 4. Rather, in this low- 
surface-tension regime, Hunter & Vanden-Broeck (1983) (see also Vanden-Broeck 
1991) found symmetric periodic waves of permanent form with a single main hump, 
resembling a KdV solitary wave, which, however, was accompanied by short-wave 
oscillatory tails. These numerical results are supported by recent existence proofs of 
solitary waves with capillary ripples at infinity (Beale 1991 ; Sun 1991). 
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The reason for the appearance of short-wave tails when 0 < 7 < $ can be readily 
understood on physical grounds. Gravity solitary waves are supcrcritical- their 
speed is higher than the linear-long-wave speed, which is the maximum phase speed 
of small-amplitude periodic waves if surface tension is neglected altogether (7 = 0). 
Hence, it is not possible for small-amplitude short-wavelength gravity waves to 
move with a gravity solitary wave, and indeed no oscillatory tails are found. The 
same is true in the presence of high surface tension (7 > 9) since now solitary waves 
are subcritical and all small-amplitude periodic waves are supercritical. On the other 
hand, when 0 < 7 < 9, elevation solitary waves are supercritical, but, in this case, 
there exist small-amplitude short-wavelength capillary waves that can travel with 
the same phase speed ; evidently, these short waves form the oscillatory tails found 
by Hunter & Vanden-Broeck (1983). 

The numerical findings of Hunter & Vanden-Broeck (1983) point to the fact that 
the KdV equation is not a valid model when 0 < 7 < 5 because it is derived on the 
assumption that only long waves are present, and hence does not take into account 
the short lengthscale of oscillatory tails. For this reason, Hunter & Scheurle (1988) 
modified the KdV equation by adding a small fifth-order-derivative term. On the 
basis of this fifth-order KdV equation, they proved the existence of travelling-wave 
solutions in the form of slightly perturbed KdV solitary waves with small-amplitude 
oscillations at the tails. Independently, Pomeau, Ramani & Grammaticos (1988) 
considered the same model equation and studied the effect of the small fifth-order 
term on a KdV solitary wave, using singular-perturbation methods. From a 
theoretical point of view, this proves to be a very interesting problem ; the amplitude 
of the oscillatory tails turns out to  be exponentially small, so that it would not 
appear a t  any order in an expansion in powers of the small parameter multiplying the 
fifth-order term of the model equation. To calculate the amplitude of the tails, 
Pomeau et al. (1988) used a nonlinear WKB technique devised earlier by Segur & 
Kruskal (1987) (see also Kruskal & Segur 1991). The results of the perturbation 
theory have been confirmed in a recent numerical study of the fifth-order KdV 
equation (Boyd 1991). 

The present paper is concerned with solitary waves in a density-stratified fluid of 
shallow depth bounded by rigid walls. In  this case, it is well known that there exists 
an infinite set of linear internal-wave modes. For each of these modes, the 
propagation of long waves is governed by a KdV equation to  leading order, according 
to  the classical long-wave expansion (Benney 1966), suggesting that solitary waves 
are possible. So the question arises as to whether internal solitary waves develop 
short-wave oscillatory tails, as in the analogous problem of gravity-capillary surface 
waves discussed earlier. It follows from the KdV theory that an internal solitary 
wave of a certain mode is supercritical with respect to the corresponding linear-long- 
wave speed, which is the maximum phase speed of all linear periodic waves of this 
mode (Yih 1979, $4.1.4); therefore, it is expected that small-amplitude waves 
associated with the same mode as a KdV solitary wave cannot form oscillatory tails. 
However, the linear phase speed of waves of a certain wavenumber decreases as the 
mode number increases (Yih 1979, $4.1.2), implying that, for a solitary wave of mode 
higher than the first, there exist lower-mode linear short waves that can move with 
the same phase speed (see figure 1) .  This suggests that a KdV solitary wave 
corresponding to  a mode higher than the first can develop oscillations at its tails 
owing to lower-mode short waves. Note that a similar situation arises in the problem 
of equatorial Rossby solitary waves (Boyd 1989). 

In accordance with the above qualitative remarks, an asymptotic theory is 
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A 

FIQURE 1.  Variation of c2 (the square of the linear-wave speed) with ke (the square of the 
wavenumber) for th,e first three linear internal-wave modes, lin a typical situation. Mode-1 waves 
with wavenumber K: and mode-2 waves with wavenumber K; have phase speed equal to the long- 
wave speed of mode-3 waves. 

presented here to establish the presence and calculate the amplitude of short-wave 
oscillations at the tails of KdV solitary internal waves of mode higher than the first. 
For this purpose, matched asymptotic expansions and the Bore1 technique for 
summing divergent series are used as in Pomeau et al. (1988), but the analysis is more 
involved than in the corresponding problem of the fifth-order KdV equation. As 
expected, the amplitude of the oscillatory tails is exponentially small, and is 
determined by asymptotic matching of the usual long-wave (outer) expansion with 
inner expansions valid near the singularities of the outer expansion. However, the 
inner equations are essentially the fully nonlinear internal-wave equations, and, in 
general, the amplitude of the tails depends on all nonlinear and dispersive terms ; so 
it does not seem possible that the correct magnitude of the oscillatory tails can be 
obtained from model equations alone. To illustrate the theory, two particular 
examples, where the nonlinear terms of the governing equations are only quadratic, 
are discussed in detail. In the first case, the square of the BrunkVlislill frequency 
is taken to be constant, while in the second case it is assumed to vary linearly with 
depth and the Boussinesq approximation is made. 

It is interesting to note that the appearance of short-wave oscillations at the tails 
of internal solitary waves of mode higher than the first is supported by experimental 
observations. In  the course of their investigation of internal-wave disturbances, 
generated by stratified flow over a sill, Farmer & Smith (1980) observed mode-2 
' solitary-like ' waves followed by a train of smaller-amplitude mode- 1 short waves 
(see figure 2t),  in qualitative agreement with the theoretical predictions. Also, in 
laboratory experiments, Davis & Acrivos (1967) noted that large-amplitude solitary 
waves in deep fluids shed oscillatory waves downstream that caused radiation 
damping of the main disturbance, consistent with the conclusions reached here (see 
§ 5 ) .  

This particular figure does not appear in Farmer & Smith (1980) ; it was kindly provided to us 
by Dr Farmer. 
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FIQURE 2. Acoustical image of internal-wave disturbances generated by stratified flow past a sill 
in the field experiments of Farmer t Smith (1980). The streamlines indicate that the main 
disturbance is a mode-2 solitary-like wave and is followed by a train of smaller-amplitude mode-1 
short waves. 

Recently, Turkington, Eydeland & Wang ( 1991), using a variational formulation 
of the governing equations, proposed a numerical technique for computing solitary- 
wave solutions in a stratified fluid, and presented several examples of mode-1 solitary 
waves ; as expected, these waves are locally confined. In earlier related work, Tung, 
Chan & Kubota (1982) proved analytically and confirmed through numerical 
computations that large-amplitude locally confined mode- 1 and mode-2 solitary 
waves are possible in a stratified fluid of finite depth, under the Boussinesq 
approximation. However, in discussing mode-2 solitary waves, they further assume 
that the density stratification is such that the Brunt-Vaisala frequency is symmetric 
about the fluid-layer centreline. This additional condition precludes the appearance 
of mode-1 oscillatory tails because waves of the first mode are symmetric while waves 
of the second mode are antisymmetric about the centreline. Nevertheless, mode-1 
oscillations are still expected to develop a t  the tails of mode-3 solitary waves, which 
are also symmetric, but Tung et al. (1982) do not report calculations of solitary waves 
of mode-3 or higher. 
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2. Preliminaries 
Consider two-dimensional internal-wave disturbances in an inviscid, incom- 

pressible layer of finite depth. Dimensionless variables will be used throughout, 
based on the fluid depth as the lengthscale and the inverse of a typical value of the 
Brunt-VaisHla frequency as the timescale. In terms of the undisturbed fluid density 
po(z) ,  the Brunt-Vaisala frequency N(z)  is defined by 

/%ON2 = - Po,, (1) 

p being the Boussinesq parameter. 
As we are interested in travelling waves of permanent form, it is convenient to 

adopt a reference frame moving with the wave speed c so that the flow is made 
steady, and introduce the stream function Y = c(z + $) where $(x, z )  describes the 
wave disturbance. In  terms of Y, the horizontal and vertical velocity components are 
given by - Y,, Y, respectively, and, thus, the incompressibility condition is 
automatically satisfied. 

Using the fact that p+po(z) in the small-amplitude limit ($ + O ) ,  the equation for 
conservation of mass can be readily integrated to determine the density: 

P = P o ( P / C ) .  (2) 

The equation governing $ is obtained by first eliminating the pressure from the two 
momentum equations. Using (l), (2), the resulting equation then can be manipulated 
to the standard form (see, for example, Yih 1979, $4.2) 

where J(a,  b) stands for the Jacobian a, b, -a, b,. Equation (3) can be integrated once 
to give 

where H is an arbitrary function. To specify H ,  note again that (4) must remain valid 
in the small-amplitude limit ( $ + O ) ,  in which case 

hence 

H(cz)  = - @ v 2 ( z ) ;  

H (  !F) = -$?N2( !P/c), 

and (4) becomes 

V 2 ~ + N 2 ( ~ + $ ) { / \ $ - ~ $ , - ~ ( $ ~ + ~ ~ ) } = 0  ( - 0 0  < z <  c ~ , O < z <  I ) ,  (5a) 

with A = 1/c2. (5b) 
To complete the formulation of the problem, we need to specify boundary 

conditions. For simplicity, it will be assumed that the fluid layer is bounded by rigid 
walls, so that 

$ = O  ( z = O , l ) .  (6) 
In the small-amplitude limit ($+ 0), (5a) can be linearized to leading order. Linear 

wave modes of the form $ = $(z )  exp (ikz) then satisfy 

10 
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This may be viewed as an eigenvalue problem, the eigenvalue parameter being either 
A for given wavenumber k ,  or k2 for fixed A. In particular, the long-wave modes { f 8 ( z ) ,  
A,}($ = 1 , 2 , .  . .) correspond to k = 0 and are defined by the eigenvalue problem 

The eigenvalues 0 < A, < A, < . . . are related to the long-wave speeds c1 > c2 > . . . 
> 0 through (5b); the eigenmodes form an orthogonal and complete set with the 
orthogonality relation 

ri 

where I, are normalization constants and a,, denotes the Kronecker delta. 
It will also prove useful for the subsequent discussion to define another set of 

modes {$,(z), K,} ( r  = 1,2,  . . .) by taking c to be equal to one of the long-wave speeds 
c,, say, so that A = A,  in (7a) ,  and considering K = k2 to be the eigenvalue parameter : 

These modes also form an orthogonal and complete set with orthogonality relation 

Kr being normalization constants. Physically, this new set of modes comprises waves 
with wavenumber K! and phase speed c,. So, the long-wave modef,(z) clearly is an 
eigenmode with eigenvalue K ,  = 0. In addition, however, it is known (Yih 1979, 
54.1.3) that there are n- 1 positive eigenvalues K~ > K~ > . . . K , - ~  > K, = 0 that 
correspond to short waves moving with the long-wave speed c,. It is clear (see figure 
1) that such waves exist only if c, is the long-wave speed of a mode higher than the 
first (n > l), and, as will be demonstrated in $5,  they can give rise to oscillations at  
the tails of a KdV solitary wave of mode n. The rest of the eigenvalues of (10) are 
negative (K,  < 0, r > n) ,  and correspond to evanescent disturbances. 

3. Long-wave expansion 
In the classical weakly nonlinear long-wave theory, it is assumed that the 

horizontal lengthscale of wave disturbances is long compared with the fluid depth, so 
that the scaled horizontal coordinate X = e z  (0 < e -4 1) is appropriate. Furthermore, 
to balance dispersive with nonlinear effects, the disturbance amplitude is taken to be 
O(e2). So, returning to the governing equation (5a) ,  $(X, z ;  e2) is expanded as 

$ = E ' ( $ ~  + + s4$, + . . .), (12) 

and A is chosen such that the wave speed c is close to c,, the linear-long-wave speed 
of mode n, say: 

In view of (12), the nonlinear term N 2 ( z + $ )  in (5a) is also expanded in a Taylor 
series : 

A=A, -aeZ ,  a=ao+€2al+ . . . .  (13) 

m 

3-1 
N2(2+ $) = P ( 2 )  + M,(Z) $5, (14) 
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where 
1 d' 

* - J !  dd 
M = 7 -N2(2) .  

Upon substitution of (12)-(14) into (5a), (6), it is found that $o satisfies 

(po$oz)z+hnPoN2$o = 0 (0 G 2 G 11, 
subject to the boundary conditions $o = 0 at z = 0 , l .  Therefore 

$0 = A(X) fn( z ) ,  (15) 
where fn(z) is the long-wave mode corresponding to h = A n ,  defined in (8), and A(X) 
is an as yet undetermined amplitude function. Proceeding to 0(c4), $1 satisfies the 
inhomogeneous problem 

( P o $ / l z ) z + h n P o N 2 $ ' 1 + P o F ~ = 0  ( O G z G  11, (16a) 
$1 = 0 (2 = 0, l),  (16b) 

where 

Invoking the usual orthogonality argument, for this problem to have a solution it is 
necessary that the solvability condition 

Fl = $oxx -Wao $0 +iP$-t) +Ml(h,  1C.i -P+o +.,,I- 

17 

is met, implying that A ( X )  has to satisfy 

with 

I n  11 = - 2 s,' Po f n  (hnM1 f E f n  f; - ~ P N Y ; ~ )  dz. 

Equation (18) is the steady KdV equation and the solution of interest here is the 
KdV solitary wave: 

A = asech2yX (19a) 

(19b) 
and y > 0, say. Depending on the sign of p, this is a wave of elevation (p < 0, 
a > 0) or depression (p > 0,a < 0) that moves with speed slightly higher than the 
corresponding linear-long-wave speed (ao > 0 in (13)). 

According to (19), each internal-wave mode can support locally confined solitary 
waves ; this is the well-known result of the standard small-amplitude long-wave 
theory. However, bearing in mind the earlier work of Segur &, Kruskal (1987) and 
Pomeau et al. (1988), it is important to note that the solution (19) is singular in the 
complex X-plane at X = +X,, where yX, = 4i(2p+ 1) n (p = 0, 1,2,  . . .). Near each of 
these singularities, the long-wave theory is expected to break down and an inner 
expansion is necessary. Matching of the long-wave expansion (12) with these inner 
expansions determines whether short-wave oscillations appear at the tails of solitary 
waves. 

To identify the appropriate inner scales of the expansions near the singularities, we 
proceed to find higher-order terms in the long-wave expansion (12). Having 
determined A ,  the inhomogeneous term in (16a) is now known : 

with a =-I #a=4Sy2, 

Fl = a o ( ~ - N z ) f n A + E l A 2 ,  

10.2 
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and pl takes the form 

Here p,(z), q l (z )  satisfy the inhomogeneous problems 

$1 = P ~ A  + q1A2 +fnAl. 

taking into account (21), (24) and making further use of (18), then yields 

&Alxx -ao A, -@A, + ql A + 5, A' + v1 A3 = 0, (25) 

where I n  q1= - I n  011 + a0 I,' Po f n  p1 ($-N2) dz, 
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Note that the regular homogeneous solution of (25) behaves like 

287 

which, in view of (19), is identical with the asymptotic behaviour of A ( X ) .  Hence, 
to avoid secular behaviour of A, at the tails of the KdV solitary wave, we require 
7, = 0 in (25); this condition, together with (24a), specifies a,: 

Using (18), the solution of (26) for A, then is found to be 

A ,  = 8,A + u1A2, (26) 

where s v , + g ,  = 0, pel = 2(c ,+~,v , .  (27a, b)  

This completes the solution for 
of the long-wave expansion (12), correct to O(e4), can be summarized as 

Combining (15), (21), (26), and (27), the results 

9 = ajn + e 4 @ , , ~  + q,Ae + (e,A + v , A ~ ) ~ , J  + o(~6). (28) 

It is clear from (28) that the O(e4) corrections to the KdV solitary wave (15), (19) 
remain locally confined. Moreover, by carrying out the expansion (12) to higher 
order, it is straightforward to confirm that this is the case for all terms in (12), in 
agreement with the fact (see $6) that the amplitude of possible oscillatory tails is 
exponentially small. 

On the other hand, as expected, expansion (28) becomes disordered near the 
singularities of 9. at X = fX,. More specifically, A ( X )  has double-pole singularities 
at X = +X, and the O(e4) term becomes comparable in magnitude with the O(e2) 
term when XfX, = O(e). This suggests the definition of a new (inner) variable f, 
appropriate near X = X ,  : 

x 
X=i-+eg. 

2Y 

In terms of 5, the inner limit of the outer expansion (28) is 

a a2 a2 
@ { -*+ v1 0" + . . .}f* +{ma + * 9 .} + 0(e2), 

indicating that 9 = O( 1) near the singularity. Expressions similar to (30) hold near 
the rest of the singularities. However, it turns out that the two singularities closest 
to the real X-axis at X = + X ,  make the dominant contribution to the oscillatory 
tails, and in the following sections we shall discuss the inner solutions near these 
singularities. 

4. Inner problem 
Attention is now focused on the inner problem near the singularity of the long- 

wave expansion at X = X,. In terms of the inner variable E defined in (29), taking into 
account (13), the governing equation (5a)  for the inner solution $(E,  z )  becomes to 
leading order 

9 2 2 +  9g++N2(z+ 9){4a 9 -P$, -3w-s" + $31 = 0. (31) 
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This equation must be solved subject to the boundary conditions (6) and the 
matching condition (30) in the intermediate region 1 Q 1E1 4 1 / ~ ,  ImE < 0. 

As expected -and will be verified in detail in $4.1 -expansion (30) is an 
asymptotic solution of (31), subject to  (6), in the intermediate matching region. It is 
important to note, however, that  the modes defined earlier in (10) also satisfy the 
linearized version of (31), subject to  (6). Hence, assuming that the KdV solitary wave 
(15), (19) is associated with a long-wave mode higher than the first (n  > 1) so that 
some of the modes (10) are oscillatory, i t  is possible to add an exponentially small 
amount of these short-wave modes to the asymptotic solution (30), thus causing the 
tails to become oscillatory. Whether such oscillations actually appear cannot be 
decided on the basis of the long-wave expansion (12) alone. Rather, it would seem 
necessary to  solve the inner equation (31), subject to (6), (30), assuming, say, that no 
oscillations are present a t  the left-hand tail (Re6-f-m) in order to obtain the 
asymptotic form of $ as Re <-+ m , and thereby determine the amplitude of possible 
oscillations a t  the right-hand tail. I n  simpler problems, where the inner equations are 
ordinary differential equations, this task has been carried out numerically (Kruskal 
& Segur 1991; Grimshaw & Hooper 1991); but here the inner equation (31) is a 
partial differential equation that includes all nonlinear and dispersive terms of the 
governing equation (5a), and a numerical approach would be rather impractical - 
essentially, it would amount to solving the original, fully nonlinear problem 
numerically. However, the Borel-summation technique, suggested by Pomeau et al. 
(1988) in connection with the fifth-order KdV equation, can be conveniently used to 
avoid a fully numerical treatment of the inner problem. The main idea is to  ‘sum’ 
the (divergent) asymptotic series (30) using Borel summation (Bender & Orszag 
1978,§8.2); the singularities of the resulting Borel sum in the (transformed) complex 
plane can then be related t o  exponentially small terms that lie beyond all orders in 
the asymptotic expansion (30). Following this procedure, the appearance of 
exponentially small oscillatory tails is established analytically, and the corresponding 
amplitude can be determined simply by solving a sequence of linear two-point 
boundary-value problems numerically. 

4.1. Asymptotic solution 
In preparation for the Borel summation of the asymptotic expansion (30)’ we now 
proceed to find expressions for the higher-order terms in this series. So, we write 

and upon substitution into (31), we find 

c {Gh -,8N2G& +A,N2G,} [ - 2 m  + X 2m(2m + 1 )  G, E-2(m+1) 
m-1 m-1 

m m ,  m 

+A,  ZM,(Z)$1+1-p2  ~ M , ( Z ) ( y + l ) , - ~ ~ c . M , ( z ) $ ~ ( $ ~ + I l r z a )  = 0 (0 < Z < 1 ) .  

(33) 

G, = 0 (Z = 0 , l ) .  (34) 

1-1 ,-13+1 I-0 

Also, in view of (6), G,(z)(m > 1)  satisfy the boundary conditions 

Equating coefficients of tp2, to zero in (33) yields an infinite sequence of boundary- 
value problems for G,(z). I n  general, of course, the nonlinear terms in (33) give rise 
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to rather cumbersome multiple convolution sums. To illustrate, suppose that the 
Taylor series (14) terminates at the linear term : 

Mj(Z) = 0 (j 2 2 ) ;  

then, the resulting sequence of equations reads 

G ~ - / 3 N 2 G ~ + h n N 2 G , + ( 2 m -  l ) ( 2 m - 2 )  Gm-l 
m-1 

1- 1 
+h,M,  Jm-@.M1Jm-~/3N2(Lm+Sm)-~/3Ml (L,-j+S,-j)G, = 0 (0 < z < l),  

(35)  
where m-1 

1-1 
m-1 

5-1 
m-2 

1-1 

J,= G,-,G, ( m a . ) ,  J1 = O ;  

L m =  Grn-,G; ( m > 2 ) ,  L l = O ;  

S,  = C. 4j(m-j- 1 )  Gm-j-1G5 (m 2 3) ,  Sl = S,  = 0. 

It is now straightforward to verify that (30)  satisfies the inner equation (31)  
asymptotically, subject to the boundary conditions (6 ) .  In particular, for m = 1 ,  
(35) yields 

and, in view of (30) ,  the appropriate solution that satisfies (34) is 

QT-flN2G~+AnN2Gl = 0 (0 < z < l), 

a G =--f 
Similarly, for m = 2,  one has 

Y2 n’ 

and recalling (23) ,  

a2 

Y 
( Z  = 0, l ) ,  

G ~ - / 3 N 2 G ~ + h , N 2 G , + ~ E l  = 0 (0 < z < I ) ,  

G, = 0 

where y2 is an as yet undetermined constant. Proceeding to m = 3, G3 satisfies 

G~-J3N2G;+h,N2G3+R3 = 0 (0 < z < l ) ,  
G ,  = 0 ( Z  = 0, l),  

where 

Imposing the solvability condition 

R3 = 20G,- /3N2(G~G;+2G~)+M1(2A,  GlG,-/3(Gl G2) ’ - vGi2Gl ) .  

l p 0 ~ 3 . f n d z  = 0, 

after some manipulation using (27) ,  (36) ,  and (37) ,  determines y,: 

a2 
Yz = a%* 

Y 

(37)  

Hence, the first two terms of the series (32)  are consistent with (30). 
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In  principle, one can calculate higher-order terms in the asymptotic solution (32), 
but the algebra becomes very tedious owing to the nonlinear terms in (35). However, 
in the limit m + m ,  (35) simplifies considerably because the contribution of the 
nonlinear terms is subdominant. To verify this, suppose that the dominant balance 
in (35) as m+ 00 is 

G ~ - ~ N 2 G m + A n N 2 G ,  - - (2m-1)(2m-2)Gm-,  (0 < z  < l) ,  (38) 
subject to (34). Compatibility then requires 

1 Po Gm-1 f n  dz = 0, 

and, recalling the orthogonality relation (ll), this condition is automatically met if 
a, is expressed in terms of the modes defined in (lo), excluding the long-wave mode 
9 n  E f n :  

Substituting (39) into (38) then yields 

Krgmr - -(2m-l)(2m-2)gm-,,r,  

where K ,  are the eigenvalues of the eigenvalue problem (10). Hence, 

gmr - C,( - l)rnK;rn(2m- 1) ! (m-t a), (40) 

and (39) gives G, - (2m- 1) ! C,( - l)m~;mqbr(~) (m+ a), (41) 
m 

r-1 
r + n  

where C, are constants that depend on G,(z) in (36) and cannot be determined by 
asymptotic analysis alone. 

Clearly, the leading-order behaviour (41) is consistent with the assumed dominant 
balance (38). To find the next term in the expansion (41), we put 

(42) CT, = C?,(2m- 1) !, 

and keeping the next-order terms in (35), one has 

0; -p~aB:, +A,  ~ 2 6 ,  + 

Also, we write 
m 

o m  = C 8 m r + r + i m f n ,  
r-1 
r + n  

where, according to (40), 

g,, - C,( - l),~;, (m+ a). (45) 

Imposing now compatibility in (43), using (45), yields 
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where 

I n  y r n  = Po fn{-2hnMl f n  +r +PHI(+, fn) )  + P N V ~ ~ ~ I  h. 

So, finally, combining (42) with (44)-(46) gives 

W 12 

r-1 P 
r + n  

W 

G,(z) - (2m- 1) ! x C,( - l ) m ~ ; m + r ( z )  + (2m - 3) ! --fn(z) Cr( - l)m~;mprn 
r-1 
r+n 

(m+0O). (47) 

4.2. Borel summation 
It is clear from (47) that the series (32) is divergent. Nevertheless, as already 
remarked, following Pomeau et al. (1988), it is useful to attempt to ‘sum’ (32) using 
the Borel-summation technique (Bender & Orszag 1978, Q 8.2). Essentially, this is 
Watson’s lemma applied in reverse : rather than generating an asymptotic expansion 
of a known function having a given integral representation, here we seek an integral 
expression for a function that has the known asymptotic expansion (32). Accordingly, 
we write 

(48) 

where (49) 

applying Watson’s lemma in the usual way, it is easy to check that the asymptotic 
expansion for 151 % 1 of $, defined in (48), (as), indeed agrees with (32). But the main 
advantage of this approach is that now the Borel transform V is expressed in terms 
of a convergent series in (49) that can be used to locate its singularities in the complex 
u-plane. As will be seen, these singularities play an important part in generating 
exponentially small terms. More specifically, in view of (47), the asymptotic form for 
large m of the general term, V,, in the series (49) is 

Therefore, V has logarithmic singularities at  

and the local behaviour of V near each of these singularities is 

V--g7r#,(z)ln (u++ur). (51) 

5. Matching 
We are now prepared to discuss the matching of the long-wave expansion (12) with 

the inner solution (48). To be specific, we shall suppose first that there are no 
oscillations at  the left-hand tail ( X - t -  00)  of the KdV solitary wave (16), (19) and 
determine the amplitude of possible oscillations at the right-hand tail (X+ 00)  

through matching. Then, solitary-wave solutions that are symmetric about X = 0 
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Im u 

I - Re u 
0 

Im u 

FIGURE 3. Position of the singularities of Vat u = f u r  = f iKjS (with K, > 0) and the corresponding 
branch cuts in the complex u-plane. (a) E lies in the left-hand matching region, ReS+-co, 
Im 5 < 0, and the cuts do not interfere with the integration path along the positive real u-axis. ( b )  
5 lies in the right-hand matching region, Re[+ co,Im < 0, and the integration path is deformed 
around the singularity a t  u = u, in order to avoid crossing the cut. 

will be considered. The question of the existence of these as exact steady-state 
solutions is discussed later in this section. 

As already noted in (51), the integrand in (48) has logarithmic singularities at  u = 
+u,, so suitable branch cuts need to be introduced. To ensure that (48) matches 
with (12) in the left matching region (Re E+- 00, Im 6 < 0) - as required by the 
assumption that no oscillations appear at the left tail - the u-plane is cut with branch 
cuts that extend away from the real u-axis (figure 3a) .  Thus, when lies in the left- 
hand matching region, the path of integration in (48) does not interfere with the cuts, 
and, using Watson’s lemma, it follows that (48) indeed matches with (32), the inner 
limit of (12). Now, as 6 is varied, the singularities (50) as well as the corresponding 
branch cuts shift in the complex u-plane, and, in fact, some of them may have crossed 
the positive real u-axis when lies in the right matching region (ReE+ co, Im 6 < 0). 
If that happens, the path of integration in (48) has to be deformed around these 
singularities to avoid crossing the cuts (figure 3b). In deforming the integration path, 
however, an extra contribution to the integral in (48) arises from each singularity. 
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These turn out to be exponentially small terms that lie beyond all orders of the 
asymptotic expansion (32), and, upon matching, give rise to oscillations at the right- 
hand tail. 

More specifically, it follows from (50) that singularities at u = f u r  with K, < 0 
never cross the path of integration in (48) as Re6 is varied from - co to co 
(Im 6 < 0 ) ,  so they play no role in the matching. On the other hand, if the eigenvalue 
problem (10) has positive eigenvalues K, ( r  = 1, . . . , n- 1) - as already remarked this 
is the case if n > 1 - it is easy to check that the corresponding singularities at u = u, 
have crossed the positive real u-axis when 5 lies in the right-hand matching region 
(figure 3 b) .  Then, deforming the integration path around these singularities, taking 
into account the dominant singularity in (51) (the contribution of the second term in 
(51) to the solitary-wave tail turns out to be subdominant), and using Watson's 
lemma to expand the integral in (48), yields 

n-1 

$ - Gm(z)[-2m+in x C,$,(z) e-"du (ReE-+ m , I m (  < 0). 
m-1 r-1 1: 

Evaluating the integrals above and recalling the definition of in (29), it is clear that 
the singularity at u = unP1 makes the dominant contribution as e+O (since 
K~ > K~ > ... > K , - ~  > 0). Hence, 

(Re t+  co,Im$ < 0). (52) 

This is the outer limit of the inner solution $(&, z )  in the right-hand matching region, 
near the singularity of the long-wave expansion (12) at X = X,. As already 
mentioned, the second term in (52), arising from the singularity a t  u = in (48), 
is exponentially small. 

Following the same procedure, an expression for $, similar to (52), can be derived 
near the singularity of the long-wave expansion (12) at X = -Xo.  In  terms of 
X = -X ,+s [ ,  one has 

(Re.$+co,Im.$>O). (53) 

Now, the asymptotic behaviour of $(X, z ;  8) at the right-hand tail (X+ co) of the 
solitary wave (15), (19) should be consistent with both inner expansions (52), (53). So, 
combining (12) with (52), (53), the appropriate asymptotic expansion at the right- 
hand tail is 

(54) 
@ - s2($-, + s2$l + . . .) + 2xcn-, $n-l(z) exp { - n: L} G-1 sin Ki-l 2. 

2YS 

Note that in the right-hand matching region near X = + X ,  

so that (54) matches with (52), (53), as required. 
According to the asymptotic solution (54), exponentially small short-wave 

oscillations of mode n- 1 necessarily appear at the right-hand tail of a KdV solitary 
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wave of mode n > 1, assuming that the left-hand tail is free of oscillations. However, 
this is impossible for an exact steady-state solution since it implies a non-zero energy 
flux at the right-hand tail, but a zero energy flux at  the left-hand tail. Hence our 
argument should be construed as establishing the non-existence of such exact 
asymmetric steady-state solutions. Note that Boyd (1991) conjectured from his 
numerical results that there are no asymmetric steady solitary-wave solutions of the 
fifth-order KdV equation. Instead, we expect that a localized initial disturbance will 
give rise to ‘solitary-like’ waves of mode n > 1 that decay slowly owing to the 
radiation of small-amplitude mode-(n- 1) short waves downstream. (In the 
analogous problem of equatorial Rossby waves, such a radiation-damping mech- 
anism of higher-mode solitary waves has been found to exist according to the 
numerical model of Williams & Wilson (1988).) This seems to explain the appearance 
of mode-1 oscillations behind the mode-2 main disturbance in figure 2 and in the 
laboratory experiments of Davis & Acrivos (1967). In simpler problems, where the 
magnitude of the radiated oscillatory tail is algebraically small, the resulting decay 
of the solitary-wave amplitude has been analysed using perturbation theory (Akylas 
1991), but this question will not be pursued here. 

The same technique can be also used to discuss the asymptotic behaviour at  the 
tails of solitary-wave solutions that are symmetric about X = 0, $(X, z ;  e2) = y2( -X, 
z ; s 2 ) .  The symmetry condition implies that the inner solutions near X = +X, have 
to be real-valued when the corresponding inner variables are purely imaginary. To 
satisfy this requirement, note that the singularities at  u = u, with K, > 0 ( r  = 1 , .  , . , 
n-1) of the integrand in (48) are on the positive real u-axis when Ref = 0. 
Accordingly, (48) is replaced with 

$ ( E ,  z )  = 2 Jw+ due-u V(z ,  u/E) + - due-u V(z,  u / f ) ,  

where the integration path %+ is deformed to pass above the singularities (and the 
corresponding cuts extend below the real u-axis), while %- is deformed to pass below 
the singularities (and the corresponding cuts extend above the real u-axis). Hence, 
when Re 5 = 0, the contributions from the singularities cancel out, so that the outer 
limit (Im f + - 00, Re 6 = 0) of (55) coincides with (32), and $ is indeed reel-valued. 
Now, when f is in the right-hand matching region, only the singularities in the 
integrand of the first integral in (55) contribute exponentially small terms to the 
outer limit of $; the singularities in the integrand of the second integral do not 
interfere with the integration path %-. Hence, the amplitude of the oscillations at  the 
right-hand tail is one half of that in (54): 

(55) 
1 1 

2 JI, 

9 - ~ * ( $ ~ + e ~ $ ~ +  ...)+nCn-lq5n-l(z)exp{ - n L } s i n & - l x  %-1 (X > 0). (Ma)  
2Ye 

Similarly, when is in the left-hand matching region, only the second integral in (55) 
contributes exponentially small terms. Taking into account the fact that the 
integration path %- now passes around the singularities in the counterclockwise 
direction, one then obtains at the left-hand tail 

$ - e2(P0 + E ~ + ~  + . . .) - ~CC,-~ $ n - l ( ~ )  exp { - n- $;:} sin K K - ~  x (X < 0). (56b) 

As expected, the asymptotic behaviours (56) are consistent with the assumed 
symmetry about the main peak at X = 0. The resulting wave is similar to the 
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symmetric capillary-gravity waves with oscillatory tails computed by Hunter t 
Vanden-Broeck (1983) in the low-surface-tension regime. These symmetric solitary 
waves with oscillatory tails are consistent on energetic grounds, and we conjecture 
that they are exact solutions of the steady-state equations. However, because the 
energy flux in the tails has the same sign a t  both ends, presumably they can not be 
excited from a localized initial condition. 

Expressions (54), (56) for the asymptotic behaviour at the tails of a KdV solitary 
wave of mode n > 1 are the main results of the asymptotic theory. It is noteworthy 
that, as suggested by the intuitive arguments of $1, the short-wave modes $&) 
( r  = 1, . . . , n - 1) with the same phase speed as the solitary wave arise naturally in the 
asymptotic analysis. Furthermore, it has been established that the (n- 1)-mode 
makes the dominant contribution to the oscillatory tails. (In special situations, as in 
Tung et al. (1982), symmetry considerations imply that the (n-1)-mode is not 
excited, in which case the (n-2)-mode is expected to dominate for n > 2.) 

Before proceeding to a discussion in $6 of the value of the constant Cn-l, it should 
be pointed out that the symmetric solution constructed in (56a, b )  is in fact only a 
member of a one-parameter family of solitary waves with oscillatory tails. This arises 
because one may add to the inner solution (55) the subdominant term 

r-1 

where B, are real constants so that (55) remains real-valued when Re6 = 0, as 
required. Hence, keeping only the dominant term in (57) for which r = n- 1, we must 
add to the expressions (56a, b )  the term 

Combining (56) with (58), the oscillatory tails of symmetric solitary waves then have 
the form 

where the amplitude B and the phase x are given by 

B*-1 tan x = -. 
RCn-1 

B = (B%, + r c * ~ ~ _ , ) t ,  

Equivalently, B cos x = ~CC,-~ defines the phase x in terms of the amplitude B.  The 
result that symmetric internal solitary waves with oscillatory tails occur as a one- 
parameter family is consistent with the theoretical results of Beale (1991) for 
gravity-capillary waves, and Boyd (1991) and Amick & Toland (1992) for the fifth- 
order KdV equation. 

The amplitude of the oscillatory tails in (54), (59) depends on the constant Cn-l 
which, as already remarked, cannot be obtained from asymptotic analysis alone. 
Returning to (33), (34), to determine CR-l, it is necessary to solve a sequence of 
boundary-value problems for G,(z) (m > 1), and match with the asymptotic 
behaviour (41) of the solution for large values of m. These are linear, inhomogeneous, 
two-point boundary-value problems and, in principle, can be solved numerically in 
a straightforward manner. However, as noted in $4.1, the (known) forcing terms in 
the equation for G,(z), that arise from the nonlinear terms in (33), involve multiple 



296 T .  R .  Akylas and R.  H .  J .  Grimshuw 

convolution sums of G,(z), . . . , Gm-,(z) and become very cumbersome to evaluate as 
rn increases. This is not unexpected because the inner equation (31) is fully nonlinear ; 
even though the oscillatory tails are dominated by the linear mode q5n-l according to 
(54), (59), the constant Cn-, and, hence, the precise value of the oscillation amplitude 
depends on all nonlinear terms. To illustrate the procedure for calculating Cn-,, two 
simple examples of density stratification, for which the nonlinear terms in (31) are 
only quadratic, are discussed below. 

6. Examples 

linearly with depth : 

where b > 0 is a constant. Then, the Taylor-series expansion (14) terminates a t  the 
linear term, M, = 0 ( j  2 2), and G m ( z )  (m 2 1 )  satisfy the simplified equation 
sequence (35). Furthermore, to avoid calculating cubic terms in (35), two particular 
cases will be considered : 

For simplicity, the density stratification is assumed to be such that N 2 ( z )  varies 

N 2 ( z )  = 1 + bz (0 < z < l ) ,  

(i) b = 0, p + 0. 
(ii) b + 0, p = 0. 
Case (i) corresponds to exponential density variation, 

p&) = exp (-pz) (0 < z < I), 

and the solutions to the eigenvalue problems (8), (10) are known in closed form : 

An = n2n2 +;p2, f,(z) = exp (i$z) sin n m  (n = i , 2 ,  . . .) ; ( 6 0 4  

K, = (n2 - r2 )z2 ,  q5&) = exp(#z)sinrzz ( r  = 1,2,  ...). (60b) 

In (ii), the Boussinesq approximation (p  = 0) implies that po is constant (po = 1).  The 
eigenvalue problems (8), (10) have to be solved numerically in this case. Table 1 lists 
the first three eigenvalues for various values of b. The corresponding eigenfunctions 
are normalized so that the normalization constants in (9), (11) are equal to $. 

The constant Cnp1 is computed by solving the sequence of inhomogeneous 
boundary-value problems (3.9, (34) for G m ( z )  (m > 1)  numerically, with G,(z) given 
by (36). As in (37), for each m > 1, the solution is expressed as the superposition of 
an inhomogeneous solution, Q m ( z ) ,  plus a multiple of the homogeneous solutionf,(z) : 

Gm(z) = Q m ( z )  + Y m f n ( z ) ,  

and the constant y m  is found by imposing the compatibility condition 

on the forcing term Rm+,, of the next boundary-value problem in the sequence. In 
implementing this procedure, since G m ( z )  grows rapidly as m increases, it proves 
convenient to make the substitution 

G m ( z )  = ( -  l)m~;!?l Um(z )  (2m- 1) ! 

and work with U,(z). Then, in view of (41), 

r + n . n - 1  
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b A1 4 A3 K1 K3 

1 .o 6.55 26.5 59.7 30.6 -49.3 
1.5 5.60 22.8 51.4 31.2 -49.2 
2.0 4.88 20.0 45.2 31.8 -49.2 
2.5 4.33 17.8 40.3 32.3 -49.2 
3.0 3.89 16.1 36.4 32.7 -49.1 

TABLE 1. First few eigenvalues of problems (8), (10) in case (ii) of density stratification for various 
values of the parameter b, and n = 2. Note that K, = 0 for all b (corresponding to the long-wave 
mode). 

(i) (ii) 

B c, b Cl 
1 .o 0.14 1 .o -8.1 
1.5 -0.33 1.5 1.8 
2.0 0.27 2 .o 5.7 
2.5 0.54 2.5 5.2 
3.0 -0.12 3 .O 3.9 

TABLE 2. Values of the constant C, for various values of the parameters B, b and n = 2 in cases 
(i), (ii) of density stratification. 

so that the constant Cn-l can be estimated from the numerical solution for Um(z), for 
large values of m, by projecting Um(z) on $,,-,(z), using the orthogonality property 
(11). 

Numerically computed values of the constant Cn-, are listed in table 2 for certain 
values of the parameters /3, b in (i), (ii) and n = 2. For this value of n, according to 
(60) and table 1, only one eigenvalue, K,, of the problem (10) is positive, and the 
amplitude of the oscillatory tails is proportional to C,. In  the numerical solution of 
the boundary-value problems (35), (34), the asymptotic solution (61) has been 
reached and convergence of the value of C, to two significant figures obtains, 
typically, for values of m larger than about 80. As expected, C, is non-zero in general, 
and mode-1 short waves certainly appear at  the tails of a mode-2 solitary wave. 
However, it is clear from table 1 that C, can be zero for special values of the 
parameters. In  such a case, the amplitude of these oscillations may vanish, at least 
to leading order in the expansion. It would be interesting to have independent 
confirmation of the predictions of the asymptotic theory by fully numerical 
computation and laboratory experimental observations of solitary waves of mode n 
> 1. In fact, in very recent numerical work, Vanden-Broeck (1992) has confirmed 
that mode-2 solitary waves can develop mode- 1 oscillatory tails. 

This work was initiated while T. R. A. was on sabbatical leave at UNSW. He wishes 
to acknowledge the support of the Office of Naval Research under Project NR062- 
742, the National Science Foundation Grant MSM-8451154, and the School of 
Mathematics at UNSW. 
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